
on the ROI location. Among the scatter correction methods used
in this study, the one based on factor analysis gave the best
overall results. However, using 110 or JA images also provided
a definite improvement compared to 120 images for both
qualitative and quantitative image analyses. Clinical studies
will now be needed to confirm that scatter correction might play
a significant role in scintimammography.
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(2.81 Â±0.78, n = 14, mean Â±s.d., p < 0.01 compared with Met)and
for OMIMT(2.03 Â±0.57, n = 17, p < 0.01 compared with Met) than
for Met (3.86 Â±1.12, n = 13). Conclusion: This study confirms that
tumor imaging with IMTis similar to that of Met but T/B ratios of IMT
are lower. OMIMTintratumoral tracer distribution and tumor size are
similar to Met and IMT,but the T/B contrast is rather low and makes
this amino acid less suitable for clinicalapplication.
Key Words amino acids; 3-[123@iodo-a-methyi-L-tyrosine; 3-

@ [methyl-3H]-L-methio
nine; cerebral glioma; autoradiography
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Radiolabeledaminoacidssuchas[methyl-11C]-L-methionine
(Met) and PET enlarge the potential of conventional radiolog
ical methods for diagnosing cerebral gliomas (1,2). One advan
tage of using amino acids appears to be visualization of the
degree of intracerebral infiltration by gliomas (3,4). In recent
years, the synthetic amino acid L-3-[123IJiodo-a-methyltyrosine
(IMT) has been used for brain tumor imaging, which can be
used in SPECT (5â€”7).

IMT is transported into the brain and into brain tumors like
other large neutral amino acids (6,8), and its uptake can be

Thisstudy compares braintumor imagingwith3-r23l]iodo-cx-meth
yI-L-tyrosine (1MT) and 3-@@'125l]iodo-O-methyl-a-methyl-L-ty
rosine (OMIMT)to that with [methyl-3H]-L-methionine (Met) in a rat
glioma model by double-tracer autoradiography. Methods Cells of
the glioma clone F-98 were implanted stereotacticalty into the right
basal ganglia of 22 Fischer 344 rats. After 8 days of tumor growth,
the animals simultaneously were injected with a mixture of either
123II,@ffand 3H-Met(n = 5), 1@I-OMlMTand 3H-Met(n = 8) or
123II@-@ and 125l-OMIMT (n = 9). The animals were killed 15 mm

afterthe tracer injection and cryosections ofthe tumor-bearing brain
area were exposed to phosphor-imaging plates both immediately
and after the decay of 1231.Tumor-to-brain ratios (1/B) and intratu
moral distribution of the different tracers and of the cresyl violet
staining of the tissue were compared. Results There was a signif
icant correlation of the T/B ratios between all tracers (IMTversus
Met: r = 0.97, n = 5, p < 0.01 ; OMIMTversus Met: r = 0.94, n = 8,
p < 0.001; OMIMT versus IMT: r = 0.95, n = 9, p < 0.001).
Intratumoral tracer distribution was similar for all tracers and the
extent oftumorlabeling was identical to that ofthe histological tumor
extent Mean values of the T/B ratios, however, were lower for IMT
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inhibited specifically by infusion of L-amino acids (7). Al
though there is no incorporation of IMT into cerebral proteins
(6,8), this tracer shows a similar diagnostic potential to Met.
This is explained by the fact that transport phenomena play an
important role for the increased accumulation of amino acids in
cerebral gliomas (9â€”11). Initial clinical investigations have
indicated the potential of SPECT with IMT for tumor grading,
diagnosis of recurrence and therapeutic response (12â€”14).

We previously compared PET with Met and SPECT with
IMT in patients with cerebral gliomas (15). In that study, the
imaging of tumor extent was identical and there was a signifi
cant correlation of tumor-to-brain (T/B) ratios of both tracers
within 1 hr postinjection. T/B ratios, however, were signifi
cantly lower for IMT than for Met. It remained unclear to what
extent this difference was due to methodological differences
between PET and SPECT or to differences between the tracers.
This study compares the T/B ratios of both tracers in a rat
glioma model by double-tracer autoradiography. This approach
allowed a more accurate comparison of T/B ratios and intratu
moral tracer distribution. The autoradiographically detected
tumor extent also can be compared with a histological analysis.

A recently introduced analog of IMT, 3-['231]iodo-O-methyl
a-methyl-L-tyrosine (OMIMT) with higher lipophilicity (16)
was also included in this study to test its tumor-imaging
capacity. This derivative of IMT was developed because brain
uptake of IMT is low and a relatively high tracer dose of
approximately 500 MBq is needed to obtain optimal brain scans
(15). This makes this procedure expensive, although the radi
ation dose is in the range of conventional nuclear medicine
investigations (1 7). Experiments in mice have shown that
OMIMT shows a five times higher brain uptake than IMT (16).
It is unknown, however, whether the uptake of this amino acid
is increased in brain tumors to the same extent as IMT.

MATERIALS AND METhODS

Radiotracers
Iodine-123-IMT and â€˜23@25I-OMIMTwere prepared as de

scribed previously (16). Specific radioactivity of IMT was > 170
TBq/mmol (4500 Ci/mmol), the radiochemical yield 80% Â±5%
and the radiochemical purity was > 99%. For OMIMT, the specific
radioactivity was > 81 TBq/mmol (2200 Ci/mmol), the radiochem
ical yield 40% Â± 5% and the radiochemical purity > 98%.
Methyl-3H-Met was obtained commercially (Amersham Buchler,
Braunschweig, Germany) with a specific radioactivity of 3. 11
TBq/mmol (84 Ci/mmol).

Animal Experiments
Male Fischer 344 rats, 8â€”12wk, weight 200â€”250g (Charles

River Wiga, Sulzfeld, Germany), were kept under standard condi
tions with free access to food and water. F-98 rat glioma cells (10

@l,1 X l0@cells) were stereotactically implanted (David Kopf
Instruments,Tujunga, CA) into the right basal ganglia ofthe 22 rats
while under isofluorane anesthesia. The tumors were allowed to
grow for 8 days. Animals were distributed at random into three
groups and were reanesthesized for tracer injection. The first group
(n = 5) was injected intracardially with a mixture of 22.2 MBq
â€˜23IIMTand 22.2 MBq 3H-Met, the second group (n = 8) with
22.2 MBq â€˜23I-OMIMTand 22.2 MBq 3H-Met and the third group
(n â€”9) with 22.2 MBq 23I-IMT and 2.2 MBq â€˜251-OMIMT.
Fifteen minutes after tracer injection, the animals were killed, the
brains were removed and then quickly frozen in liquid isopentane
(â€”50Â°C).This time point waschosenbecausein humanscerebral
uptake of IMT reaches a maximum approximately 15 mm after
injection (6, 15). For OMIMT, maximal uptake in the brain of mice
was observed at 10 mm after injection (16). The brain was cut into

20-@tmsections in a cryostat. The experiments were approved by
the district government (Cologne/Germany No. 23.203.2 KFA
6/93).

Autoradiography
Coronal sections of the tumor-bearing brain were exposed to

imaging plates (Fuji Photofilm, Tokyo, Japan). In the case of the
double-tracer comparison, â€˜231-IMTversus 3H-Met or â€˜23I-OMIMT
versus 3H-Met, respectively, the brain slices were first exposed to
3H-sensitive imaging plates that were covered with a plastic foil
inpenetrable for beta-particles of 3H. After the decay of 1231(10
half-lives), the brain slices were exposed again to 3H-sensitive
imaging plates without plastic foil to obtain 3H-Met distribution. In
the case of the double-tracer comparison, â€˜23I-IMTversus I25I
OMIMT a 10 times higher tracer dose was used for â€˜23I-IMT.Brain
slices were exposed immediately after tracer injection and after
decay of 1231(10 half-lives) to obtain pure â€˜25I-OMIMTimages.

Imaging plates were scanned by a phosphor imager (BAS 3000;
Fuji Photofilm). The images were evaluated by regions of interest
(ROIs) manually drawn around the whole tumor area and over a
large area of normal brain tissue. Tracer uptake in the tumors was
inhomogeneous, but none of the tumors showed larger areas of
necrotic tissue with no tracer uptake. T/B ratios were determined
by dividing the average photo-stimulated luminescence value per
millimeter (2) of the tumor by that of the normal brain. Identical
ROIs were used on the corresponding brain slices labeled with
different tracers. In the â€˜231-IMTversus â€˜25l-OMIMTcomparison,
the contamination ofthe tumor and the normal brain region by 1251
in the first exposure was calculated by measuring the photo
stimulated luminescence value per hour produced by 1251in the
second exposure. These values were subtracted from the data in the
first exposure to obtain the true â€˜23I-IMTT/B ratio.

The tissue sections were stained with cresyl violet, which results
in an intense coloration ofNissl-substance and nucleoli and is well
suited to detect microscopically intracerebral tumor infiltration.
The histological tumor extent was compared visually to that of the
autoradiograms.

Statistical Analysis
Results are presented as mean Â±s.d. Statistical methods used

were the Student's t-test for group comparisons and Pearson's
correlation coefficient. Probability values < 0.05 were considered
to be significant.

RESULTS
Data of the T/B ratios found for the three different tracers are

given in Table 1. The mean value ofT/B ratios was 2.81 Â±0.78
for IMT (n = 14), 2.03 Â±0.57 for OMIMT (n = 17, p < 0.01
versus IMT) and 3.86 Â±1.12 for Met (n 13, p < 0.01 versus
IMT, p < 0.001 versus OMIMT). There was a significant
correlation of the T/B ratios between all tracers (IMT versus
Met: r = 0.97, n = 5, p < 0.01, Fig. IA; OMIMT versus Met:
r = 0.94, n = 8, p < 0.001, Fig. 1B; OMIMT versus IMT: r =
0.95, n = 9, p < 0.001, Fig. IC). In relation to the T/B ratios
of Met, those of IMT showed an increasing deviation from the
line of unity in tumors with high uptake (Fig. 1A). This trend
was even stronger for OMIMT (Fig. I B).

Visual evaluation showed no difference in the pattern of
intratumoral tracer distribution between the different tracers,
and the extent of tumor labeling was identical to that of the
histological tumor extent. An example of a comparison between
autoradiograms of Met (left), IMT (middle) and histological
staining using cresyl violet is given in Figure 2. T/B contrast of
IMT is slightly lower than Met, but the tumor imaging of tumor
extent and intratumoral tracer distribution is similar. Figure 3
compares autoradiograms of Met (left), OMIMT (middle) and
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TABLE I
Tumor-to-Brain Ratios of 3H-Met, 123l@@lMTand l2a'l25l@OMlMTin

Transplanted Rat Glioma Model

histological staining (right). For OMIMT, the T/B contrast is
considerably lower than of Met. Intratumoral tracer distribution
is similar to that of Met, and the extent of the tumor labeling of
both tracers is identical to that of cresyl violet staining.

DISCUSSION
In a previous study, we compared the results ofPET with Met

and SPECT with IMT in patients with cerebral gliomas (15). In
that study, both methods yielded similar results concerning
tumor size and intratumoral tracer distribution, but T/B ratios
were slightly lower for IMT. It was confirmed by this study that
imaging of cerebral gliomas with both tracers is identical with
respect to tumor size and intratumoral tracer distribution. Since
IMT, in contrast to Met, is not incorporated into protein, this
result gives further support to the hypothesis that transport
phenomena are of major importance for the increased uptake of
large neutral amino acids in cerebral gliomas (9,10,18).

A frequently asked question is whether the increased uptake
of amino acids in cerebral gliomas is caused by a disruption of
the blood-brain barrier. It has been shown for Met, as well as for
IMT, that uptake is also increased in low-grade gliomas without
disruption of the blood-brain barrier (2,3, 7,11 ) and that uptake
in these tumors and in the normal brain can be competitively
inhibited by intravenous infusion ofother amino acids (7, 19). It
remains to be determined whether the increased uptake of
amino acids in gliomas is caused by an increased number of
amino acid carriers, by changes in substrate affinity of the
carrier systems or by the appearance of additional carrier
systems in glioma cells.

Although there was a good correlation in the T/B ratios
between all tracers, the mean values of T/B ratios were
significantly lower for IMT and OMIMT than for Met. Thus,
the lower T/B ratios for SPECT with IMT as opposed to PET

13.653.02â€”23.983.09â€”33.032.3â€”44.773.46â€”55.463.80â€”63.84â€”2.1074.55â€”2.3081.89â€”1.4094.69â€”2.40103.6â€”1.6011/

4.67â€”2.30121.67â€”1.23134.42â€”2.0014â€”3.012.6115â€”2.321.6816â€”3292.5217â€”1.701.5718â€”2.011.5319â€”3.843.3520â€”1.401.2621â€”2.562.1022â€”3.592.50Mean

Â±S.d.t3.86 Â±l.l2@2.81 Â±0.78*2.03 Â±0.57*

FIGURE 1. Comparisonof tumor-to
brain (1/B) ratios for IMT,OMIMTand
Met.ThereissignfficantcorrelationofT/B
ratiosamong alltracers. (A)Inrelationto
T/B ratios of Met, those of MTshowed
increasingdeviationfrom lineof unityin
tumors withhighuptake. (B)Thistrend is
even stronger for OMIMT.(C)The devia
tionfromthe lineof unityis also obvious
when comparingOMIMTto IMT.

FIGURE 2. Comparison of autoradio
grams of Metdeft),IMT(middle)and his
tological staining using cresyl violet
(right).Intratumoraltracer distributionis
similarfor IMTand Met.Tumor-to-brain
contrast is slighflylowerfor IMTthan for
Met.Extentof tumor labelingis identical
to that of cresylvioletstaining.
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FIGURE 3. Comparison of autoradio
grams of Met (left),OMIMT(middle)and
histological staining using cres@1violet
(right).Tumor-to-braincontrast is lower
for OMIMTthan for Met. Intratumoral
tracer distributionis similarfor IMTand
Met. Extentof tumor labelingis identical
to that of cresylvioletstaining.

with Met, which were observed in the above-mentioned study
(15), are not only explained by the technical differences
between SPECT and PET but also by differences in the cerebral
uptake of the tracers. The correlation analysis of T/B ratios
between the Met and IMT autoradiograms showed that the T/B
ratios deviated from the line of unity increasingly with higher
T/B values. This effect was more strongly expressed for
OMIMT than for IMT. It can be speculated that differences in
the lipophilicity of Met, IMT and OMIMT may play a role in
this phenomenon. Using the octanol-water partition coefficient,
the lipophilicity of OMIMT compared to that of IMT was
greater than a factor of two (1 7). The fivefold higher brain
uptake of OMIMT compared to IMT observed in mice may be
attributed to passive diffusion that flattens the T/B signal. The
advantage of higher brain uptake ofOMIMT is thus neutralized,
and this amino acid seems to be unsuitable for clinical appli
cation. For IMT, the T/B ratios are also lower than for Met but
still acceptable for clinical application. The clinical use of this
amino acid has been demonstrated (6,12â€”14).

Study Limitations
The animal model used in this study is not an optimal model

for the behavior of a human glioma. The glioma transplanted
into a rat brain has a growth that more closely mimics that of a
metastasis. There is, however, at present no better animal
model. The shortcomings of the animal model have no impact
on the comparisons of T/B ratios and intratumoral distribution
of the different tracers.

CONCLUSION
This study confirms that tumor imaging with IMT is similar

to that of Met, but T/B ratios of IMT were found to be
significantly lower than for Met. For OMIMT, intratumoral
tracer distribution and tumor size were similar to that of Met
and IMT, but the T/B contrast was low, and this makes this
amino acid less suitable for clinical application.
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